Skip to content
  • Login
  • Cart
Kombucha Brewers International
  • WHY KBI
    • Mission
    • Industry Info
    • Member Benefits
    • Join Now
  • Resources
    • Member Forum & Resource Library
    • Kombucha Code of Practice
    • Industry FAQ
    • KBI Approved Ethanol Testing Methodology
    • Kombucha Brewers Coronavirus Resource Center
  • Our Members
    • Brewery Members
    • Supplier Members
    • Partners
  • NEWSROOM
    • Press
    • Blog
    • SYMBIOSIS Magazine
    • Achievements
  • Events
    • World Kombucha Day 2.21
    • Webinar Wednesday
    • KombuchaKon 2022
    • Virtual KombuchaKon 2020
    • KBI Europe Committee Annual Member’s Meeting
  • Research & Advocacy
    • Kombucha Research Database
    • Lobbying
    • Laraine Dave Kombucha Education & Lobbying Fund
  • For Kombucha Lovers
    • World Kombucha Day 2.21
    • Kombucha FAQ
    • Kombucha Taproom Tourism Guide
    • Consumer’s Guide to Kombucha
Advanced Search




By Topic

  • 4-lactone (dsl)
  • Acetic Acid
  • Acetobacter
  • Acid Content
  • Acidity
  • Amino Acids
  • Animal Feed Supplement
  • Antimicrobial
  • Antioxidant
  • Arsenic
  • Arthritis
  • B Vitamins
  • Black Tea
  • Brettanomyces
  • Burns
  • Cadmium
  • Caffeine
  • Calcium
  • Cancer
  • Cells
  • Cellulose
  • Chickens
  • Cholesterol
  • Chronic Fatigue
  • Citric Acid
  • Coffee
  • Common Cold
  • Cosmetic
  • D-saccharic Acid 1
  • Dental Cavaties
  • Detoxification
  • Diabetes
  • Ducks
  • E. Coli
  • Emf
  • Environmental Pollutant
  • Ethanol
  • Fructose
  • Gastritis
  • Gluconacetobacter
  • Gluconic Acid
  • Glucose
  • Glucuronic Acid
  • Goundwater Contamination
  • Green Tea
  • Heat Pasteurization
  • Hepatoprotective
  • Immunity
  • Iron
  • Kefir
  • Kidney
  • Kombucha Symbiosis
  • Lactic Acid
  • Lactobacillus
  • Liver
  • Longevity
  • Lysine
  • Malic Acid
  • Mannitol
  • Mice
  • Organic Acids
  • Palm Sugar
  • Ph
  • Phosphorous
  • Polyphenols
  • Probiotics
  • Protein
  • Psoriasis
  • Pu-erh Tea
  • Radiation
  • Rats
  • Review
  • Saccharomyces
  • Scar Reduction
  • Sour Cherry Juice
  • Space
  • Stress
  • Sucrose
  • Sugar Content
  • Tartaric Acid
  • Tea Waste Material
  • Temperature
  • Time
  • Topical
  • Toxicant
  • Trichloroethylene (tce)
  • Ulcer
  • Ulcers
  • Vitamin
  • Weight Loss
  • Zygosaccharomyces
  • Show more


By Decade

  • 1990-1999
  • 2000-2009
  • 2010-2019
  • 2020-2029


By Country

  • Australia
  • Brazil
  • Canada
  • China
  • Columbia
  • Denmark
  • Ecuador
  • Egypt
  • France
  • Germany
  • Ghana
  • India
  • Indonesia
  • Indonesia, France
  • Iran
  • Iraq
  • Ireland
  • Italy
  • Kazakhstan
  • Korea
  • Latvia
  • Macedonia
  • Malaysia
  • Maylasia
  • Mexico
  • Netherlands
  • New Mexico
  • Poland
  • Poland & Usa
  • Portland
  • Portugal
  • Republic Of Korea
  • Romania
  • Russia
  • Serbia
  • Serbia.
  • Slovakia
  • South Africa
  • South Korea
  • Sri Lanka
  • Sri Lanka & Singapore
  • Sri Lanka, Canada
  • Sudan
  • Taiwan
  • Thailand
  • Toulouse, France
  • Tunesia
  • Tunisia
  • Turkey
  • U.s.
  • Uk
  • Ukraine
  • Ukraine/denmark
  • United Kingdom
  • United States
  • Usa
  • Usa - Suny Undergrad Presentation - Alfred State College Of Technology - Fa
  • Viet Nam
  • Vietnam
  • Yugoslavia
  • Show more



Bacterial Cellulose of Kombucha Mushroom Tea



Authors:
Soheir S. Abd, El-Salam

Abstract:
Kombucha is composed of yeast and acetic acid bacteria, especially, Acetobacter xylinum, which forms a cellulose pellicle on tea broth. The yield and properties of cellulose produced were investigated in this study; the tea broth was fermented naturally for 14 days in the presence of different amounts of black tea and sucrose as nitrogen and carbon sources. 8.7g/L black tea produced the highest weight of bacterial cellulose (55.46g/L), and 100g/L sucrose also exhibited a high amount of pellicle (63.58g/L). The bacterial cellulose production increased with the increase of surface area and depth of the broth. Temperature was an essential factor in growth, where the pellicle was formed at range (20oC - 50oC), and a higher temperature over 50oC depressed the bacterial cellulose formation. Bacterial pellicle was separated from kombucha tea preparation and purified; the pellicle was reticulated structure consisting of fine cellulose threads, where it could be detected by carrying out transmission, scanning electron microscope and FT.IR spectroscopy.

Keywords: acetic acid, acetobacter, black tea, cellulose, sucrose, temperature

Click Here to View The Study


Country: Egypt

Citation: N Y Sci J;5(4):81-87

Study Mailing Address:
Botany Dept.Fac. Sci. Benha Univ. Egypt.

Date Updated: March 2, 2020

Thumbs Up 0 people like this study.


Kombucha Brewers International © All Rights Reserved 2014-2025