Skip to content
  • Login
  • Cart
Kombucha Brewers International
  • WHY KBI
    • Mission
    • Industry Info
    • Member Benefits
    • Join Now
  • Resources
    • Member Forum & Resource Library
    • Kombucha Code of Practice
    • Industry FAQ
    • KBI Approved Ethanol Testing Methodology
    • Kombucha Brewers Coronavirus Resource Center
  • Our Members
    • Brewery Members
    • Supplier Members
    • Partners
  • NEWSROOM
    • Press
    • Blog
    • SYMBIOSIS Magazine
    • Achievements
  • Events
    • World Kombucha Day 2.21
    • Webinar Wednesday
    • KombuchaKon 2022
    • Virtual KombuchaKon 2020
    • KBI Europe Committee Annual Member’s Meeting
  • Research & Advocacy
    • Kombucha Research Database
    • Lobbying
    • Laraine Dave Kombucha Education & Lobbying Fund
  • For Kombucha Lovers
    • World Kombucha Day 2.21
    • Kombucha FAQ
    • Kombucha Taproom Tourism Guide
    • Consumer’s Guide to Kombucha
Advanced Search




By Topic

  • 4-lactone (dsl)
  • Acetic Acid
  • Acetobacter
  • Acid Content
  • Acidity
  • Amino Acids
  • Animal Feed Supplement
  • Antimicrobial
  • Antioxidant
  • Arsenic
  • Arthritis
  • B Vitamins
  • Black Tea
  • Brettanomyces
  • Burns
  • Cadmium
  • Caffeine
  • Calcium
  • Cancer
  • Cells
  • Cellulose
  • Chickens
  • Cholesterol
  • Chronic Fatigue
  • Citric Acid
  • Coffee
  • Common Cold
  • Cosmetic
  • D-saccharic Acid 1
  • Dental Cavaties
  • Detoxification
  • Diabetes
  • Ducks
  • E. Coli
  • Emf
  • Environmental Pollutant
  • Ethanol
  • Fructose
  • Gastritis
  • Gluconacetobacter
  • Gluconic Acid
  • Glucose
  • Glucuronic Acid
  • Goundwater Contamination
  • Green Tea
  • Heat Pasteurization
  • Hepatoprotective
  • Immunity
  • Iron
  • Kefir
  • Kidney
  • Kombucha Symbiosis
  • Lactic Acid
  • Lactobacillus
  • Liver
  • Longevity
  • Lysine
  • Malic Acid
  • Mannitol
  • Mice
  • Organic Acids
  • Palm Sugar
  • Ph
  • Phosphorous
  • Polyphenols
  • Probiotics
  • Protein
  • Psoriasis
  • Pu-erh Tea
  • Radiation
  • Rats
  • Review
  • Saccharomyces
  • Scar Reduction
  • Sour Cherry Juice
  • Space
  • Stress
  • Sucrose
  • Sugar Content
  • Tartaric Acid
  • Tea Waste Material
  • Temperature
  • Time
  • Topical
  • Toxicant
  • Trichloroethylene (tce)
  • Ulcer
  • Ulcers
  • Vitamin
  • Weight Loss
  • Zygosaccharomyces
  • Show more


By Decade

  • 1990-1999
  • 2000-2009
  • 2010-2019
  • 2020-2029


By Country

  • Australia
  • Brazil
  • Canada
  • China
  • Columbia
  • Denmark
  • Ecuador
  • Egypt
  • France
  • Germany
  • Ghana
  • India
  • Indonesia
  • Indonesia, France
  • Iran
  • Iraq
  • Ireland
  • Italy
  • Kazakhstan
  • Korea
  • Latvia
  • Macedonia
  • Malaysia
  • Maylasia
  • Mexico
  • Netherlands
  • New Mexico
  • Poland
  • Poland & Usa
  • Portland
  • Portugal
  • Republic Of Korea
  • Romania
  • Russia
  • Serbia
  • Serbia.
  • Slovakia
  • South Africa
  • South Korea
  • Sri Lanka
  • Sri Lanka & Singapore
  • Sri Lanka, Canada
  • Sudan
  • Taiwan
  • Thailand
  • Toulouse, France
  • Tunesia
  • Tunisia
  • Turkey
  • U.s.
  • Uk
  • Ukraine
  • Ukraine/denmark
  • United Kingdom
  • United States
  • Usa
  • Usa - Suny Undergrad Presentation - Alfred State College Of Technology - Fa
  • Viet Nam
  • Vietnam
  • Yugoslavia
  • Show more



Kombucha Fermentation and Its Antimicrobial Activity



Authors:
Guttapadu Sreeramulu, Yang Zhu, Wieger Knol

Abstract:
Kombucha was prepared in a tea broth (0.5% w/v) supplemented with sucrose (10% w/v) by using a commercially available starter culture. The pH decreased steadily from 5 to 2.5 during the fermentation while the weight of the "tea fungus" and the OD of the tea broth increased through 4 days of the fermentation and remained fairly constant thereafter. The counts of acetic acid-producing bacteria and yeasts in the broth increased up to 4 days of fermentation and decreased afterward. The antimicrobial activity of Kombucha was investigated against a number of pathogenic microorganisms. Staphylococcus aureus, Shigella sonnei, Escherichia coli, Aeromonas hydrophila, Yersinia enterolitica, Pseudomonas aeruginosa, Enterobacter cloacae, Staphylococcus epidermis, Campylobacter jejuni, Salmonella enteritidis, Salmonella typhimurium, Bacillus cereus, Helicobacter pylori, and Listeria monocytogenes were found to be sensitive to Kombucha. According to the literature on Kombucha, acetic acid is considered to be responsible for the inhibitory effect toward a number of microbes tested, and this is also valid in the present study. However, in this study, Kombucha proved to exert antimicrobial activities against E. coli, Sh. sonnei, Sal. typhimurium, Sal. enteritidis, and Cm. jejuni, even at neutral pH and after thermal denaturation. This finding suggests the presence of antimicrobial compounds other than acetic acid and large proteins in Kombucha.

Keywords: fermented tea, kombucha, food fermentation, antimicrobial activity, pathogenicmicroorganisms

Click Here to View The Study


Country: Netherlands

Citation: J. Agric. Food Chem. 48, 2589-2594

Study Mailing Address:
Department of Applied Microbiology and Gene Technology, TNO Nutrition and Food Research Institute,
P.O. Box 360, 3700 AJ Zeist, The Netherlands

Date Updated: March 10, 2020

Thumbs Up 0 people like this study.


Kombucha Brewers International © All Rights Reserved 2014-2025