Kombucha Multimicrobial Community under Simulated Spaceflight and Martian Conditions
Authors:
O. Podolich, I. Zaets, O. Kukharenko, I. Orlovska, O. Reva, L. Khirunenko, M. Sosnin, A. Haidak, S. Shpylova, E. Rabbow, M. Skoryk, M. Kremenskoy
Abstract:
Kombucha microbial community (KMC) produces a cellulose-based biopolymer of industrial importance and a probiotic beverage. KMC-derived cellulose-based pellicle film is known as a highly adaptive microbial macrocolony-a stratified community of prokaryotes and eukaryotes. In the framework of the multipurpose international astrobiological project "Biology and Mars Experiment (BIOMEX)," which aims to study the vitality of prokaryotic and eukaryotic organisms and the stability of selected biomarkers in low Earth orbit and in a Mars-like environment, a cellulose polymer structural integrity will be assessed as a biomarker and biotechnological nanomaterial. In a preflight assessment program for BIOMEX, the mineralized bacterial cellulose did not exhibit significant changes in the structure under all types of tests. KMC members that inhabit the cellulose-based pellicle exhibited a high survival rate; however, the survival capacity depended on a variety of stressors such as the vacuum of space, a Mars-like atmosphere, UVC radiation, and temperature fluctuations. The critical limiting factor for microbial survival was high-dose UV irradiation. In the tests that simulated a 1-year mission of exposure outside the International Space Station, the core populations of bacteria and yeasts survived and provided protection against UV; however, the microbial density of the populations overall was reduced, which was revealed by the implementation of culture-dependent and culture-independent methods. Reduction of microbial richness was also associated with a lower accumulation of chemical elements in the cellulose-based pellicle film, produced by microbiota that survived in the post-test experiments, as compared to untreated cultures that populated the film.
Keywords: biology and mars experiment (biomex)-kombuchamultimicrobial community-biosignature-biofilm-bacterial cellulose
Country: Ukraine
Citation: Astrobiology. May 17(5): 459-469
Study Mailing Address:
Olga Podolich
Institute of Molecular Biology and Genetics of NASU
Acad. Zabolotnoho str., 150
03680 Kyiv
Ukraine
Date Updated: March 11, 2020