Skip to content
  • Login
  • Cart
Kombucha Brewers International
  • WHY KBI
    • Mission
    • Industry Info
    • Member Benefits
    • Join Now
  • Resources
    • Member Forum & Resource Library
    • Kombucha Code of Practice
    • Industry FAQ
    • KBI Approved Ethanol Testing Methodology
    • Kombucha Brewers Coronavirus Resource Center
  • Our Members
    • Brewery Members
    • Supplier Members
    • Partners
  • NEWSROOM
    • Press
    • Blog
    • SYMBIOSIS Magazine
    • Achievements
  • Events
    • World Kombucha Day 2.21
    • Webinar Wednesday
    • KombuchaKon 2022
    • Virtual KombuchaKon 2020
    • KBI Europe Committee Annual Member’s Meeting
  • Research & Advocacy
    • Kombucha Research Database
    • Lobbying
    • Laraine Dave Kombucha Education & Lobbying Fund
  • For Kombucha Lovers
    • World Kombucha Day 2.21
    • Kombucha FAQ
    • Kombucha Taproom Tourism Guide
    • Consumer’s Guide to Kombucha
Advanced Search




By Topic

  • 4-lactone (dsl)
  • Acetic Acid
  • Acetobacter
  • Acid Content
  • Acidity
  • Amino Acids
  • Animal Feed Supplement
  • Antimicrobial
  • Antioxidant
  • Arsenic
  • Arthritis
  • B Vitamins
  • Black Tea
  • Brettanomyces
  • Burns
  • Cadmium
  • Caffeine
  • Calcium
  • Cancer
  • Cells
  • Cellulose
  • Chickens
  • Cholesterol
  • Chronic Fatigue
  • Citric Acid
  • Coffee
  • Common Cold
  • Cosmetic
  • D-saccharic Acid 1
  • Dental Cavaties
  • Detoxification
  • Diabetes
  • Ducks
  • E. Coli
  • Emf
  • Environmental Pollutant
  • Ethanol
  • Fructose
  • Gastritis
  • Gluconacetobacter
  • Gluconic Acid
  • Glucose
  • Glucuronic Acid
  • Goundwater Contamination
  • Green Tea
  • Heat Pasteurization
  • Hepatoprotective
  • Immunity
  • Iron
  • Kefir
  • Kidney
  • Kombucha Symbiosis
  • Lactic Acid
  • Lactobacillus
  • Liver
  • Longevity
  • Lysine
  • Malic Acid
  • Mannitol
  • Mice
  • Organic Acids
  • Palm Sugar
  • Ph
  • Phosphorous
  • Polyphenols
  • Probiotics
  • Protein
  • Psoriasis
  • Pu-erh Tea
  • Radiation
  • Rats
  • Review
  • Saccharomyces
  • Scar Reduction
  • Sour Cherry Juice
  • Space
  • Stress
  • Sucrose
  • Sugar Content
  • Tartaric Acid
  • Tea Waste Material
  • Temperature
  • Time
  • Topical
  • Toxicant
  • Trichloroethylene (tce)
  • Ulcer
  • Ulcers
  • Vitamin
  • Weight Loss
  • Zygosaccharomyces
  • Show more


By Decade

  • 1990-1999
  • 2000-2009
  • 2010-2019
  • 2020-2029


By Country

  • Australia
  • Brazil
  • Canada
  • China
  • Columbia
  • Denmark
  • Ecuador
  • Egypt
  • France
  • Germany
  • Ghana
  • India
  • Indonesia
  • Indonesia, France
  • Iran
  • Iraq
  • Ireland
  • Italy
  • Kazakhstan
  • Korea
  • Latvia
  • Macedonia
  • Malaysia
  • Maylasia
  • Mexico
  • Netherlands
  • New Mexico
  • Poland
  • Poland & Usa
  • Portland
  • Portugal
  • Republic Of Korea
  • Romania
  • Russia
  • Serbia
  • Serbia.
  • Slovakia
  • South Africa
  • South Korea
  • Sri Lanka
  • Sri Lanka & Singapore
  • Sri Lanka, Canada
  • Sudan
  • Taiwan
  • Thailand
  • Toulouse, France
  • Tunesia
  • Tunisia
  • Turkey
  • U.s.
  • Uk
  • Ukraine
  • Ukraine/denmark
  • United Kingdom
  • United States
  • Usa
  • Usa - Suny Undergrad Presentation - Alfred State College Of Technology - Fa
  • Viet Nam
  • Vietnam
  • Yugoslavia
  • Show more



Kombucha tea beverage: Microbiological characteristic, antioxidant activity, and phytochemical composition



Authors:
Eva Ivanisova, Krist?na Menhartova, Margarita Terentjeva, Lucia Godocikova, J. Arvay, Miroslava Kacaniova

Abstract:
The aim of the present study was to determine the microbial composition, antioxidant activity, and content of phytochemicals in prepared kombucha tea beverage. Microbiota was identified by MALDI-TOF mass spectrometry, antioxidant activity of beverage was tested by ABTS and phosphomolybdenum method, the total content of phytochemicals (polyphenols, flavonoids, and phenolic acids) was measured by colorimetric methods. The major phenolic acids, flavonoids, and methylxanthines were detected by high performance liquid chromatography (HPLC). Candida krusei, Sphingomonas melonis, Sphingomonas aquatilis, Brevibacillus centrosporus, and Gluconobacter oxydans were the most abundant microorganisms. Antioxidant activity of kombucha tested by ABTS and phosphomolybdenum method was 1.16 mg TEAC/ml and 2.04 mg TEAC/ml, respectively, which values were higher than in black tea 0.67 and 0.81 mg TEAC/ml, respectively. Also, content of total polyphenols (0.42 mg GAE/ ml), flavonoids (0.13 mg QE/ml), and phenolic acids (0.19 mg CAE/ml) was higher in kombucha than in black tea (0.18 mg GAE/ml; 0.02 mg QE/ml; 0.05 mg CAE/ml, respectively). Gallic, chlorogenic, syringic, and protocatechuic acids, and rutin and vitexin from flavonoids were dominant in kombucha beverage detected by HPLC. A great difference in caffeine contents, 217.81 g ml1 (black tea) and 100.72 g ml?1 (kombucha beverage), was observed. The amounts of theobromine were similar in black tea and kombucha, but theophylline was detected only in black tea in trace amount (0.52 g ml1).

Keywords: black tea, tea fungus, flavonoids, phenolic acids, methylxanthines

Click Here to View The Study


Country: Slovakia

Citation: Acta Alimentaria, 48 (3). pp. 324-331. ISSN 0139-3006 (print); 1588-2535 (online)

Date Updated: January 20, 2021

Thumbs Up 0 people like this study.


Kombucha Brewers International © All Rights Reserved 2014-2025