Skip to content
  • Login
  • Cart
Kombucha Brewers International
  • WHY KBI
    • Mission
    • Industry Info
    • Member Benefits
    • Join Now
  • Resources
    • Member Forum & Resource Library
    • Kombucha Code of Practice
    • Industry FAQ
    • KBI Approved Ethanol Testing Methodology
    • Kombucha Brewers Coronavirus Resource Center
  • Our Members
    • Brewery Members
    • Supplier Members
    • Partners
  • NEWSROOM
    • Press
    • Blog
    • SYMBIOSIS Magazine
    • Achievements
  • Events
    • World Kombucha Day 2.21
    • Webinar Wednesday
    • KombuchaKon 2022
    • Virtual KombuchaKon 2020
    • KBI Europe Committee Annual Member’s Meeting
  • Research & Advocacy
    • Kombucha Research Database
    • Lobbying
    • Laraine Dave Kombucha Education & Lobbying Fund
  • For Kombucha Lovers
    • World Kombucha Day 2.21
    • Kombucha FAQ
    • Kombucha Taproom Tourism Guide
    • Consumer’s Guide to Kombucha
Advanced Search




By Topic

  • 4-lactone (dsl)
  • Acetic Acid
  • Acetobacter
  • Acid Content
  • Acidity
  • Amino Acids
  • Animal Feed Supplement
  • Antimicrobial
  • Antioxidant
  • Arsenic
  • Arthritis
  • B Vitamins
  • Black Tea
  • Brettanomyces
  • Burns
  • Cadmium
  • Caffeine
  • Calcium
  • Cancer
  • Cells
  • Cellulose
  • Chickens
  • Cholesterol
  • Chronic Fatigue
  • Citric Acid
  • Coffee
  • Common Cold
  • Cosmetic
  • D-saccharic Acid 1
  • Dental Cavaties
  • Detoxification
  • Diabetes
  • Ducks
  • E. Coli
  • Emf
  • Environmental Pollutant
  • Ethanol
  • Fructose
  • Gastritis
  • Gluconacetobacter
  • Gluconic Acid
  • Glucose
  • Glucuronic Acid
  • Goundwater Contamination
  • Green Tea
  • Heat Pasteurization
  • Hepatoprotective
  • Immunity
  • Iron
  • Kefir
  • Kidney
  • Kombucha Symbiosis
  • Lactic Acid
  • Lactobacillus
  • Liver
  • Longevity
  • Lysine
  • Malic Acid
  • Mannitol
  • Mice
  • Organic Acids
  • Palm Sugar
  • Ph
  • Phosphorous
  • Polyphenols
  • Probiotics
  • Protein
  • Psoriasis
  • Pu-erh Tea
  • Radiation
  • Rats
  • Review
  • Saccharomyces
  • Scar Reduction
  • Sour Cherry Juice
  • Space
  • Stress
  • Sucrose
  • Sugar Content
  • Tartaric Acid
  • Tea Waste Material
  • Temperature
  • Time
  • Topical
  • Toxicant
  • Trichloroethylene (tce)
  • Ulcer
  • Ulcers
  • Vitamin
  • Weight Loss
  • Zygosaccharomyces
  • Show more


By Decade

  • 1990-1999
  • 2000-2009
  • 2010-2019
  • 2020-2029


By Country

  • Australia
  • Brazil
  • Canada
  • China
  • Columbia
  • Denmark
  • Ecuador
  • Egypt
  • France
  • Germany
  • Ghana
  • India
  • Indonesia
  • Indonesia, France
  • Iran
  • Iraq
  • Ireland
  • Italy
  • Kazakhstan
  • Korea
  • Latvia
  • Macedonia
  • Malaysia
  • Maylasia
  • Mexico
  • Netherlands
  • New Mexico
  • Poland
  • Poland & Usa
  • Portland
  • Portugal
  • Republic Of Korea
  • Romania
  • Russia
  • Serbia
  • Serbia.
  • Slovakia
  • South Africa
  • South Korea
  • Sri Lanka
  • Sri Lanka & Singapore
  • Sri Lanka, Canada
  • Sudan
  • Taiwan
  • Thailand
  • Toulouse, France
  • Tunesia
  • Tunisia
  • Turkey
  • U.s.
  • Uk
  • Ukraine
  • Ukraine/denmark
  • United Kingdom
  • United States
  • Usa
  • Usa - Suny Undergrad Presentation - Alfred State College Of Technology - Fa
  • Viet Nam
  • Vietnam
  • Yugoslavia
  • Show more



Polyphenolic Profile, Sugar Consumption and Organic Acids Generation along Fermentation of Infusions from Guava (Pisidium guajava) by the Kombucha Consortium



Authors:
MARTHA ROCO MORENO-JIMENEZ, NURIA ELIZABETH ROCHA-GUZMANA, JOSE GUADALUPE RUTIAGA-QUINONES, DANIELA MEDRANO-NUNEZ, JUAN ANTONIO ROJAS-CONTRERAS, RUBEN FRANCISCO GONZALEZ-LAREDO, JOSE ALBERTO GALLEGO

Abstract:
The kombucha beverage is usually prepared from black tea, with sucrose, inoculated with previously fermented liquid broth and/or tea fungus pellicle, and incubated. Alternative sources have been used for kombucha beverages. Guava leaves have been used for a long time as traditional medicine. It is found in many commercially available botanical supplements in the form of decoction, milled and used as comprises. They are rich in polyphenolic compounds. Several changes are produced during the fermentation of the beverages. The main objective of the present work is to characterize the fermentation process of guava leaves infusions by kombucha and studying possible chemical changes in their polyphenolic profile. Infusions from guava leaves were prepared and fermented by the kombucha consortium. The pH, titrable acidity, polyphenolic compounds, sugar consumption, organic acid along the fermentation was made by UPLC-ESI-MS. Kombucha from Camellia sinensis (CS) was made as a control. A higher rate of sucrose consumption was observed for Kombucha made with CS; also, higher production of organic acids (acetic and succinic acid) was observed too. Both behaviors were related to the content of glucose. The flavan-3-ols were diminishing along the fermentation time, with the exception of epigallocatechin in Camellia sinensis, Flavan-3-ol content in Guava leaves was low. Higher content of dicaffeoyl quinnic acid was observed for both systems in special for CS, falling after a maximum peak; minor constituents of hydroxycinnamic acids were stable along the fermentation for both systems.

Keywords: fermentation, guava leaves, kombucha, polyphenols

Click Here to View The Study


Country: Mexico

Citation: Recent Research in Science and Technology , 10: 16-22doi: 10.25081/rrst.2018.10.3399http://updatepublishing.com/journal/index.php/rrst/

Study Mailing Address:
Facultad de Ingeniera en Tecnologa de la Madera. Universidad Michoacana de San Nicols de Hidalgo. Apartado Postal 580. 58000 Morelia, Michoacn. Mxico

Date Updated: January 22, 2021

Thumbs Up 0 people like this study.


Kombucha Brewers International © All Rights Reserved 2014-2025