Skip to content
  • Login
  • Cart
Kombucha Brewers International
  • WHY KBI
    • Mission
    • Industry Info
    • Member Benefits
    • Join Now
  • Resources
    • Member Forum & Resource Library
    • Kombucha Code of Practice
    • Industry FAQ
    • KBI Approved Ethanol Testing Methodology
    • Kombucha Brewers Coronavirus Resource Center
  • Our Members
    • Brewery Members
    • Supplier Members
    • Partners
  • NEWSROOM
    • Press
    • Blog
    • SYMBIOSIS Magazine
    • Achievements
  • Events
    • World Kombucha Day 2.21
    • Webinar Wednesday
    • KombuchaKon 2022
    • Virtual KombuchaKon 2020
    • KBI Europe Committee Annual Member’s Meeting
  • Research & Advocacy
    • Kombucha Research Database
    • Lobbying
    • Laraine Dave Kombucha Education & Lobbying Fund
  • For Kombucha Lovers
    • World Kombucha Day 2.21
    • Kombucha FAQ
    • Kombucha Taproom Tourism Guide
    • Consumer’s Guide to Kombucha
Advanced Search




By Topic

  • 4-lactone (dsl)
  • Acetic Acid
  • Acetobacter
  • Acid Content
  • Acidity
  • Amino Acids
  • Animal Feed Supplement
  • Antimicrobial
  • Antioxidant
  • Arsenic
  • Arthritis
  • B Vitamins
  • Black Tea
  • Brettanomyces
  • Burns
  • Cadmium
  • Caffeine
  • Calcium
  • Cancer
  • Cells
  • Cellulose
  • Chickens
  • Cholesterol
  • Chronic Fatigue
  • Citric Acid
  • Coffee
  • Common Cold
  • Cosmetic
  • D-saccharic Acid 1
  • Dental Cavaties
  • Detoxification
  • Diabetes
  • Ducks
  • E. Coli
  • Emf
  • Environmental Pollutant
  • Ethanol
  • Fructose
  • Gastritis
  • Gluconacetobacter
  • Gluconic Acid
  • Glucose
  • Glucuronic Acid
  • Goundwater Contamination
  • Green Tea
  • Heat Pasteurization
  • Hepatoprotective
  • Immunity
  • Iron
  • Kefir
  • Kidney
  • Kombucha Symbiosis
  • Lactic Acid
  • Lactobacillus
  • Liver
  • Longevity
  • Lysine
  • Malic Acid
  • Mannitol
  • Mice
  • Organic Acids
  • Palm Sugar
  • Ph
  • Phosphorous
  • Polyphenols
  • Probiotics
  • Protein
  • Psoriasis
  • Pu-erh Tea
  • Radiation
  • Rats
  • Review
  • Saccharomyces
  • Scar Reduction
  • Sour Cherry Juice
  • Space
  • Stress
  • Sucrose
  • Sugar Content
  • Tartaric Acid
  • Tea Waste Material
  • Temperature
  • Time
  • Topical
  • Toxicant
  • Trichloroethylene (tce)
  • Ulcer
  • Ulcers
  • Vitamin
  • Weight Loss
  • Zygosaccharomyces
  • Show more


By Decade

  • 1990-1999
  • 2000-2009
  • 2010-2019
  • 2020-2029


By Country

  • Australia
  • Brazil
  • Canada
  • China
  • Columbia
  • Denmark
  • Ecuador
  • Egypt
  • France
  • Germany
  • Ghana
  • India
  • Indonesia
  • Indonesia, France
  • Iran
  • Iraq
  • Ireland
  • Italy
  • Kazakhstan
  • Korea
  • Latvia
  • Macedonia
  • Malaysia
  • Maylasia
  • Mexico
  • Netherlands
  • New Mexico
  • Poland
  • Poland & Usa
  • Portland
  • Portugal
  • Republic Of Korea
  • Romania
  • Russia
  • Serbia
  • Serbia.
  • Slovakia
  • South Africa
  • South Korea
  • Sri Lanka
  • Sri Lanka & Singapore
  • Sri Lanka, Canada
  • Sudan
  • Taiwan
  • Thailand
  • Toulouse, France
  • Tunesia
  • Tunisia
  • Turkey
  • U.s.
  • Uk
  • Ukraine
  • Ukraine/denmark
  • United Kingdom
  • United States
  • Usa
  • Usa - Suny Undergrad Presentation - Alfred State College Of Technology - Fa
  • Viet Nam
  • Vietnam
  • Yugoslavia
  • Show more



Response Surface Methodologyto Optimize a Bioprocess for Kefiran Production



Authors:
Jose Manuel Pais-Chanfrau, Luis Enrique Trujillo Toledo, Paola Margarita Alvarado Condor, Milton Jimmy Cuaran Guerrero, Jimmy Nunez Perez, Leonor Margarita Rivera Intriago

Abstract:
Kefiran is an edible biopolymer formed by a galactose and glucose chain in nearly equal proportions. This biopolymer has important applications in the pharmaceutical and food industries. This is produced by the action of an acid-lactic bacteria and yeast consortium on lactose present in the kefiran granule. In the present work, kefiran concentration in the fermentation broth was optimized by the application of the response surface methodology in a central composite design of thirteen experiments. Temperature and whey powder (WP) content were the analyzed dependent variables. Among the 14 suggested optimal temperature and WP conditions, it was selected 25C for temperature and 44.1% (w/w) for WP as optimal conditions to perform further model validation experiments. Under these conditions, the quadratic model regarding kefiran concentration displayed 209.72 9.77 mg Glu/mL after 48 h of culture. The obtained response surface model was further validated with three additional experiments by using these optimal conditions for temperature and WP content described above. The validation result was 216.06 14.40 mg Glu/mL suggesting that experimental and theoretical models have not significant differences (p 0.05). Kefiran isolation process was carried out from five 100 mL batches each, yielding 3.1 1.3 g/L of kefiran in the culture supernatant.

Keywords: glucose, kefir, ph, temperatureacidity, fermentation, glucuronic acid, high-performance liquid chromatography, kombucha, pomegranate juice, response surface methodology, sucrose, ph value

Click Here to View The Study


Country: Ecuador

Citation: La Prensa Medica. 104. 10.4172/lpma.1000285.

Study Mailing Address:
Prof. Jose MANUEL Pais Chanfrau -- Universidad Tcnica del Norte E Facultad de Ingeniera en Ciencias Agropecuarias y Ambientales (FICAYA). The Agro-Industry Engineering

Date Updated: January 25, 2021

Thumbs Up 0 people like this study.


Kombucha Brewers International © All Rights Reserved 2014-2025