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Understanding Kombucha Tea Fermentation:
A Review
Silvia Alejandra Villarreal-Soto, Sandra Beaufort, Jalloul Bouajila , Jean-Pierre Souchard, and Patricia Taillandier

Abstract: Kombucha is a beverage of probable Manchurian origins obtained from fermented tea by a microbial
consortium composed of several bacteria and yeasts. This mixed consortium forms a powerful symbiosis capable of
inhibiting the growth of potentially contaminating bacteria. The fermentation process also leads to the formation of
a polymeric cellulose pellicle due to the activity of certain strains of Acetobacter sp. The tea fermentation process by
the microbial consortium was able to show an increase in certain biological activities which have been already studied;
however, little information is available on the characterization of its active components and their evolution during
fermentation. Studies have also reported that the use of infusions from other plants may be a promising alternative.
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Practical Application: Kombucha is a traditional fermented tea whose consumption has increased in the recent years
due to its multiple functional properties such as anti-inflammatory potential and antioxidant activity. The microbiological
composition of this beverage is quite complex and still more research is needed in order to fully understand its behavior.
This study comprises the chemical and microbiological composition of the tea and the main factors that may affect its
production.

Introduction
Fermentation is one of the most antique methods of food preser-

vation. It is also a low-cost energy conservation system, which is
essential to ensure the life and safety of food. Many biochemical
changes occur during fermentation and may affect the nutrient
compounds and consequently the properties of the final product,
like the bioactivity and digestibility. Recently, this bioprocess has
been applied for the production and extraction of bioactive com-
pounds from plants in food and beverage industries (Hur, Lee,
Kim, Choi, & Kim, 2014).

Kombucha tea is obtained from a symbiotic culture of acetic
acid bacteria (AAB; Komagataeibacter, Gluconobacter, and Acetobacter
species) (Roos & Vuyst, 2018), lactic acid bacteria (LAB; Lac-
tobacillus, Lactococcus) (Marsh, Hill, Ross, & Cotter, 2014), and
yeasts (Schizosaccharomyces pombe, Saccharomycodes ludwigii, Kloeckera
apiculata, Saccharomyces cerevisiae, Zygosaccharomyces bailii, Torulaspora
delbrueckii, Brettanomyces bruxellensis) (Coton et al., 2017) in a sweet
medium, generally black tea. Its fermentation process also leads to
the formation of a floating biofilm on the surface of the growth
medium due to the activity of certain strains of AAB (Watawana,
Jayawardena, Gunawardhana, & Waisundara, 2016). The main
acids present are acetic, gluconic, tartaric, malic, and in less propor-
tion citric acid. All these acids are responsible for its characteristic
sour taste (Jayabalan, Marimuthu, & Swaminathan, 2007). Actual
food trends toward minimally processed products, without addi-
tives, high nutritional value and with health benefits have increased
with consumer awareness. In this context, the traditional Kom-
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bucha tea has recently captured the attention of researchers and
consumers because of its probiotic characteristics. However, the
manufacturing technology, its microbiota, byproducts, and physic-
ochemical properties are important facts to consider for industrial
production. There are several types of fermentation and obtained
products depending on the metabolic pathway followed. Kom-
bucha fermentation is a combination of three of them: alcoholic,
lactic, and acetic one, this because of the presence of several yeasts
and bacteria coexisting in the medium. Being initiated by osmotol-
erant microorganisms and ultimately dominated by acid-tolerant
species. Several authors have studied the benefits of Kombucha tea;
however, there is little information on the characterization of its
active components, their evolution during fermentation, and their
pharmacological activities. Moreover, the influence of fermenters,
substrates, metabolites, and their improvements on the organolep-
tic qualities and fermentation kinetics should be also evaluated.

Kombucha Tea: A Complex Fermented Beverage
Kombucha is a popular drink among many traditional fermented

foods. Bacteria and yeasts present in the medium create a pow-
erful symbiosis capable of inhibiting the growth of contaminating
microorganisms (Vitas, Malbasa, Grahovac, & Loncar, 2013). It is
composed of two phases: a floating biofilm and a sour liquid phase.
Acetic acid, gluconic acid, and ethanol are the main components in
the liquid, but also in the biofilm due to its great water absorption
capacity (Czaja, Krystynowicz, Bielecki, & Brown, 2006). Under
aerobic conditions the symbiotic consortium of Kombucha is able
to convert sugar and tea in a period from 7 to 10 days in a lightly
carbonated, slightly sour, and refreshing drink, which is composed
of several acids, 14 amino acids, vitamins, and some hydrolytic en-
zymes (Malbaša, Lončar, Vitas, & Čanadanović-Brunet, 2011).

Chemical composition
Detailed knowledge of the composition and properties of Kom-

bucha tea is crucial for better understanding its kinetics. However,
the composition and metabolite concentration are dependent on
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Table 1–General chemical composition of Kombucha.

Compound
Average

composition Initial sucrose
Fermentation
time (days) References

Organic acids Acetic acid
Acetic acid
Acetic acid
Gluconic acid
Glucuronic acid
Lactic acid

5.6 g/L
8.36 g/L
11 g/L
39 g/L
0.0160 g/L
0.18 g/L

70 g/L
100 g/L
100 g/L
100 g/L
70 g/L
100 g/L

15 d
18 d
30 d
60 d
21 d
18 d

Blanc (1996)
Jayabalan et al. (2007)
Chen and Liu (2000)
Chen and Liu (2000)
Lončar et al. (2006)
Jayabalan et al. (2007)

Vitamins Vitamin B1
Vitamin B2
Vitamin B6
Vitamin B12
Vitamin C

0.74 mg/mL
8 mg/100 mL
0.52 mg/mL
0.84 mg/mL
25 mg/L

70 g/L
70 g/L
70 g/L
70 g/L
70 g/L

15 d
10 d
15 d
15 d
10 d

Bauer-Petrovska and
Petrushevska-Tozi (2000)

Malbaša et al. (2011)
Bauer-Petrovska and

Petrushevska-Tozi (2000)
Bauer-Petrovska and

Petrushevska-Tozi (2000)
Malbaša et al. (2011)

General composites Ethanol
Proteins
Tea polyphenols

5.5 g/L
3 mg/mL
7.8 Mm GAE

100 g/L
100 g/L
100 g/L

20 d
12 d
15 d

Chen and Liu (2000)
Jayabalan et al. (2007)
Chu and Chen (2006)

Minerals Cu, Fe, Mn, Ni, Zn 0.1 to 0.4 μg/mL 70 g/L 15 d Bauer-Petrovska and
Petrushevska-Tozi (2000)

Anions F−, CI−, Br −, I−, NO3
−,

HPO4
− SO4

−
0.04 to 3.20 mg/g 100 g/L 7 d Kumar, Narayan, and Hassarajani

(2008)

the inoculum source (Nguyen, Nguyen, Nguyen, & Le, 2015),
the sugar and tea concentration (Fu, Yan, Cao, Xie, & Lin, 2014;
Watawana and others 2017), the fermentation time (Chen &
Liu, 2000), and the temperature used (Jayabalan et al., 2008;
Lončar, Djurić, Malbaša, Kolarov, & Klašnja, 2006). Any change
in the fermentation conditions might affect the final product.
Nevertheless, the main components and some key metabolites
produced in the fermented tea are present below in Table 1.

Final sugar concentrations can differ from one fermentation
to another, which indicates that the metabolic pathway does not
always occur in the same way (Chen & Liu, 2000). Regarding the
production of organic acids, Jayabalan et al. (2007) observed the
increasing production of acetic acid through the fermentation until
a maximum of 9.5 g/L after 15 days. In the case of D-glucuronic
acid, it reached a maximum concentration of 2.3 g/L on the
12th day and in less quantity 0.54 g/L of lactic acid was detected
in the 3rd day. As for the anionic concentration, it remains at low
values, ranging between 0.04 and 3.20 mg/g, being F− and Cl−
the most present anions (Watawana, Jayawardena, Gunawardhana,
& Waisundara, 2015). The chemical composition as well as the
concentration of each metabolite produced in Kombucha will
always depend on the inoculum, initial sugar concentration, and
so on. However, among the main constituents of Kombucha tea,
glucuronic acid is considered to be the main therapeutic agent
(Kumar & Joshi, 2016).

Microbiological composition
Several studies have shown that the microbial spectrum of Kom-

bucha consortium, also called SCOBY or tea fungus, may vary
between fermentations (Chakravorty et al., 2016; Coton et al.,
2017; Reva et al., 2015). However, there is a number of species
that remains in most of Kombucha cultures, which are described
next.

Yeasts
Most yeasts species can ferment sugar to ethanol, yet many

modern alcoholic fermentation processes are initiated by a single
starter culture, commonly being Saccharomyces cerevisiae due to its

high efficiency. However non-Saccharomyces yeasts are becoming
increasingly used in the industry in mixed fermentations (wine,
tequila, and so on) in order to enrich the aromatic profile, and
to enhance the complexity and the kinetics of the final product
(Lopez, Beaufort, Brandam, & Taillandier, 2014; Nehme, Math-
ieu, & Taillandier, 2008). Microbial interactions between Saccha-
romyces and non-Saccharomyces yeasts seems to be an advantageous
option in mixed fermentation processing, having several benefits
like avoiding the risks of stuck fermentation, the addition of aro-
mas and flavors, allows the modification of undesired parameters,
between others (Sun, Gong, Jiang, & Zhao, 2014). And in this
sense, Kombucha’s yeasts interaction has proven to be a consor-
tium that generates final desirable characteristics.

There are many yeasts genus and species in Kombucha culture,
a broad spectrum has been reported including species of Zygosac-
charomyces, Candida, Kloeckera/Hanseniaspora, Torulaspora, Pichia,
Brettanomyces/Dekkera, Saccharomyces, Lachancea, Saccharomycoides,
Schizosaccharomyces, and Kluyveromyces (Chakravorty et al., 2016;
Coton et al., 2017; Marsh et al., 2014). Despite of its variability,
some of the predominant species are presented in Table 2.

In addition to those already mentioned, several authors have
quantified some other yeasts present in the Kombucha culture,
Watawana et al. (2016) reported Zygosaccharomyces as the predom-
inant yeast with 84.1% of relative percentage of abundance and
Dekkera and Pichia species with 6% and 5%, respectively. Mayser
(1995), revealed biofilm-forming yeasts such as Candida krusei
or Issatchenkiaorientalis as well as species of the apiculatus yeasts
(Kloeckera, Hanseniaspora). A new ascosporogenous yeast called Zy-
gosaccharomyces kombuchaensis was isolated from Kombucha tea by
Kurtzman, Robnett, and Basehoar-Powers (2001).

Bacteria
The dominant bacteria of Kombucha tea culture are AAB,

which are aerobic bacteria able to use alcohol as a substrate to
form acetic acid. These bacteria, in contrast to yeast, require
large amounts of oxygen for their growth and activity. The
metabolic process is based on the conversion of acetaldehyde into
ethanol and acetaldehyde hydrate into acetic acid by the enzyme
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Table 2–Some yeasts species present in Kombucha culture.

Species Morphology Characteristics

Schizosaccharomyces pombe � High fermentative
power

� Ability to convert
malic acid to ethanol

� Release of high
quantities of
polysaccharides
(Domizio, Liu, Bisson
L, & Barile, 2017)

Brettanomyces bruxellensis � High resistance to
osmotic and ethanol
stress

� Higher efficiency to
utilize the available N
sources than
Saccharomyces cerevisiae

� Tendency to ferment
sugars to ethanol, and
produce high
concentrations of
acetic acid in aerobic
conditions (Steensels
et al., 2015)

Saccharomyces cerevisiae � High ethanol tolerance
� Rapid fermentation

rates
� Insensitivity to

temperature and
substrate concentration
(Choonut, Saejong, &
Sangkharak, 2014)

Zygosaccharomyces rouxii � Highly osmo- and
halo-tolerant

� Counteract better
sugar and salt stress
than S. cerevisiae (Dakal
et al., 2014)

Only images from Pitt and Hocking (2009) with modifications.

acetaldehyde dehydrogenase (Jayabalan et al., 2007). Several AAB
are present in the tea fungus, including: Acetobacter xylinoides,
Bacterium gluconicum, Acetobacter aceti, Acetobacter pasteurianus,
and Gluconobacter oxydans (Jayabalan, Malbaša, Lončar, Vitas, &
Sathishkumar, 2014). Marsh et al. (2014) worked with rRNA
sequence analysis and found between 86% and 99% relative
abundance of Gluconacetobacter through all the fermentation both
in the liquid medium and in the biofilm. Similar results were
obtained by Watawana et al. (2016) who fermented coconut
water with the tea fungus and found Gluconacetobacter as the main
one with a relative percentage of 85.6 and in less proportion
Acetobacter, Lactobacillus, Leuconostoc, and Bifidobacterium species.

Cellulose production
There are several types of bacteria that can produce microbial

cellulose, such as: Aerobacter, Agrobacterium, Azotobacter, Rhizobium,
Salmonella, and Gluconacetobacter (Mohite & Patil, 2014). Among
the Acetobacter gender, the dominant specie is Acetobacter xylinum,
which was reclassified as Gluconacetobacter xylinus and more re-
cently to Komagataeibacter xylinus (Yamada et al., 2012). A specific
biochemical activity of this bacterium is the oxidation of glucose
to gluconic acid, which is found in the liquid phase, then another
specific metabolism leads to the synthesis of microbial cellulose

forming the biofilm that remains in the liquid surface. The process
includes the synthesis of uridine diphospho-glucose (UDPGlc)
(Figure 1), which is the cellulose precursor, then each single cell
of Acetobacter may polymerize up to 200,000 glucose residues per
second into β-1,4-glucan chains. The advantage of this form of
cellulose production is that the bacterium grows rapidly under
controlled conditions and can produce cellulose from a variety of
carbon sources including glucose, ethanol, sucrose, and glycerol.

The microbial cellulose is produced extracellularly in the form
of fibrils that are attached to the bacterial cell. Each single cell
has between 50 and 80 pores or complex terminals (CTs) with a
diameter of 3.5nm for extruding cellulose out of their membrane
(Figure 2). These chains are later assembled forming thicker fibrils
called macrofibrils creating a 3-D structure of about 1,000 individ-
ual glucan chains which can hold up to 200 times more water of its
dry mass and possess high conformability and great elasticity. Bac-
teria produce two forms of cellulose, cellulose I and cellulose II.
Cellulose I is a ribbon-like polymer composed of bundles of mi-
crofibrils, while cellulose II is an amorphous polymer that is ther-
modynamically more stable than cellulose I (Podolich et al., 2016).

In the first state, the producing cellulose bacteria increase its
population through the consumption of the dissolved oxygen.
During this time, the microorganism synthesizes certain amount
of cellulose in the liquid medium and just the bacteria that are in
the air/medium interface can maintain its activity and produce cel-
lulose, which is formed by superimposed layers. As fermentation
time advances, the membrane thickness is increased by the genera-
tion of new layers on the surface, forming a suspended structure in
the culture medium. The development of the biofilm along with
hydrogen and C-H bonding will continue through all fermen-
tation, its synthesis will reach its limit when it grows downward
entrapping all bacteria, which then will become inactive due to
insufficient oxygen supply (Esa, Tasirin, & Rahman, 2014). The
bacteria remaining in the liquid phase of the culture medium are
in a dormant state and can be reactivated and used as inoculum in
a later fermentation (Ruka, Simon, & Dean, 2012). This biofilm
possesses high crystallinity, high tensile strength, extreme insolu-
bility in most of the solvents, moldability, high degree of polymer-
ization, it is 100 times thinner than that of cellulose fibrils obtained
from plants, and its water holding capacity is over 100 times higher
(Chawla, Bajaj, Survase, & Singhal, 2009). One of its main char-
acteristics is its purity, which distinguish it from the plant one
that contains hemicellulose and lignin (Sulaeva, Henniges, Rose-
nau, & Potthast, 2015), but also its high degree of crystallinity
(>60%) where the crystals formed are composed of cellulose type
Iα and Iβ. These unique properties, as well as its purity have
allowed many successful applications in the field of biomedical
materials (Kuo, Chen, Liou, & Lee, 2015). The biofilm may vary
depending on the used strains, culture time, and chemical additives
present in the culture media (Lee, Gu, Kafle, Catchmark, & Kim,
2015), but it is also hypothesized that microbial cellulose obtained
from a Kombucha culture may produce a biofilm with different
characteristics than those form typical sources (Nguyen, Flanagan,
Gidley, & Dykes, 2008). There are several factors to consider in
order to maximize the yield of microbial cellulose and optimize
the process, for example, the volume of the inoculated media, the
incubation time, the surface area, and surface height conditions
(Cacicedo et al., 2015). The removal of the amorphous parts of
the nanofibrils through acid hydrolysis can produce nanocrystals,
which can be used for different purposes in several areas as food
packaging or medical applications (Campano, Balea, Blanco, &
Negro, 2016).
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Figure 1–Biochemical pathway for
cellulose synthesis by A. xylinum. CS,
cellulose synthase, GK, glucokinase,
FBP, fructose-1,6-biphosphate
phosphatase, FK, fructokinase, 1FPk,
fructose-1-phosphate kinase, PGI,
phosphoglucoisomerase, PMG,
phosphoglucomutase, PTS, system
of phosphotransferases, UGP,
pyrophosphorylase uridine
diphosphoglucose, UDPG, lcuridine
diphosphoglucose, G6PDH,
glucose-6-phosphate dehydrogenase,
NAD, nicotinamide adenine
dinucleotide, NADP, nicotinamide
adenine dinucleotide phosphate
(Chawla et al., 2009).

Figure 2–Assembly of cellulose microfibrils by K. xylinum (Cacicedo et al., 2015, after modifications).

Microorganisms Interactions
The complexity of understanding Kombucha fermenta-

tion kinetics are mainly due to the important number of
microorganisms present and the interactions between them
(Markov, Jerinic, Cvetkovic, Loncar, & Malbasa, 2003), which
are considered to have inhibitory effects on the ethanol produc-
tion. However, the death and autolysis of yeast cells releases also
vitamins and other nutrients that stimulate the growth of im-
portant bacteria. Most microbial species excrete metabolic prod-
ucts that can either stimulate or inhibit the specific growth rate
of the other species, establishing commensalistic or amensalistic
interactions which have to be extensively analyzed to achieve the
comprehension of this phenomenon of coexistence. Some bacte-
ria groups such as LAB and AAB, as well as yeasts species such as
Saccharomyces cerevisiae, have well-established roles in the fermen-
tation. However, until today, there are many other species whose
roles have not been extensively characterized, nor the interactions
between them. There are a number of obstacles in understanding
microbial ecosystems, the first one is the enormous diversity and
complexity of most of the microbial communities, for example,
certain microorganisms can participate in parallel, while others

act in a sequential manner with a dominant evolution during fer-
mentation (Chakravorty et al., 2016). In the case of Kombucha,
the different yeasts and bacteria species act in parallel producing
two different final products: the fermented tea and the biofilm.
At the beginning of the fermentation, yeast hydrolyze sucrose
into glucose and fructose, formerly the ethanol is produced and
finally AAB transform ethanol into acetic acid, nonetheless the
production of gluconic and glucuronic acids is also remarkable
(Figure 3).

Microbial identification methodologies
Traditionally, microorganisms have been classified and identified

mainly by morphological and physiological criteria, nevertheless
in addition to these standard tests, biochemical methods provide
important data for the characterization, however, the result of
these tests sometimes lead to erroneous characterizations because
these functions are controlled by one or few genes. Besides,
all these tests take time and sometimes their determination and
classification is ambiguous due to the variability of the species.
That is why, it is recommended to complement the conventional
techniques with molecular techniques to elucidate not only the
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Figure 3–Main metabolic activity of
Kombucha tea (Markov et al., 2003).

degree of relationship, but also to reveal the connections between
evolutionary mechanisms (Kurtzman et al., 2001).

Chen and Liu, (2000) reported a technique for enumeration of
AAB and yeast in the liquid and in the biofilm. They declared the
number of viable cells and were also able to isolate some of the
yeasts and main AAB throughout the fermentation, where they
noted that the number of viable cells was greater in the liquid
broth than in the biofilm. The protocol was based on the use of
potato dextrose and GYCA agar medium to numerate yeasts and
AAB from 20 g of sample homogenized in a blender for 9 min
then incubated at 30 °C for 3 days. Cell counts were expressed
as colony-forming units per milliliter. Hidalgo, Mateo, Mas, and
Torija (2012) worked with yeasts and bacteria identification meth-
ods and obtained 453 yeasts and 270 bacteria isolates. In the case
of yeasts, YPD agar was used (yeast extract 10 g/L, bacteriolog-
ical peptone 20 g/L, D-glucose 20 g/L, and agar 20 g/L) and
incubated for 48 hr at 28 °C. Then about 25 and 30 colonies
were randomly picked and plated on a selective lysine medium
to differentiate Saccharomyces and non-Saccharomyces yeasts, and fi-
nally a PCR reaction mix and RFLP- PCR of rDNA was per-
formed to identify the yeasts species. For the bacteria isolation
method, GYCA medium was used (10% glucose, 1% yeast ex-
tract, 2% CaCO3, and 1.5% agar supplemented with 100 mg/L
of natamicine). Then total DNA was extracted using the CTAB
method (cetyltrimethylammonium bromide), all AAB were geno-
typed using ERIC and (GTG) 5-rep-PCR fingerprinting tech-
niques, and the electrophoresis was analyzed in 1.5% (w/v) agarose
gels. Colonies with a halo around them were subjected to Gram
staining and catalase test, which verified their identity as AAB. En-
terobacterial Repetitive Intergenic Consensus-PCR and Repet-
itive Palindromic-PCR have been proposed as suitably accurate
techniques for identifying bacteria strains and for determining
taxonomic relationships between bacterial species because of their
high degree of polymorphism.

It is recommended to use combined techniques such as RFLP
because it seems to provide additional information to establish a
phylogenetic placement of several real yeasts. This was demon-
strated by Kurtzman et al. (2001), where the combination of these
techniques allowed to distinguish the different species within the
genus Zygosaccharomyces, obtained from Kombucha isolates. Ac-
cording to Meersman et al. (2013), the use of a traditional method
combined with one of accurate identification such as ribosomal

DNA, sequence-based PCR, or fragment length polymorphism
will lead to a more precise quantification of the microbiota and
a further isolation of potential starter cultures. However, the first
culture-independent, high-throughput sequencing analysis of the
Kombucha biofilm was done by Marsh et al. (2014) with which
they were able to identify the major bacterial and yeast popula-
tions present both in the biofilm and in the liquid broth, being
Gluconacetobacter and Zygosaccharomyces, respectively.

Factors Influencing Kombucha Fermentation
Fermentation is influenced by many factors such as tempera-

ture, pH, the amount of oxygen, the CO2 dissolved, the operating
system, the supply of precursors, the shear rate in the fermenter,
as well as the nature and composition of the medium (Marsh
et al., 2014). Any variation in these factors can affect the rate
of fermentation, the spectrum, the performance, the organolep-
tic properties, the nutritional quality, and other physicochemical
properties of the product. Different plant varieties, sugar concen-
trations, fermentation time, and composition of tea fungus may
account for differences in composition and therefore the biological
activities would also be affected (Wolfe & Dutton, 2015).

Substrate
Usually Kombucha beverage is obtained from the fermenta-

tion of sweetened green or black teas, but some authors (Battikh,
Bakhrouf, & Ammar, 2012; Watawana et al., 2016) have studied
other substrates as an alternative for its production obtaining inter-
esting results. Battikh et al. (2012) tested the antimicrobial activity
of several Kombucha tea analogues finding improved inhibition
values than with the traditional beverage, mostly against Candida
species. Velićanski, Cvetković, and Markov (2013) demonstrated
that sweetened Echinacea (Echinacea purpurea L.) and winter savory
(Satureja montana L.) can be used as alternative nitrogen sources, re-
ducing the fermentation time and obtaining comparable character-
istics to the traditional beverage. Watawana et al. (2015) fermented
coconut water (Cocos nucifera var. aurantiaca) with the Kombucha
consortium and observed an enhancement of some interesting
biological activities. And recently, Ayed et al. (2016) developed a
Kombucha beverage from grape juice with improved sensorial and
functional properties after just 6 days of fermentation. According
to these studies, it can be concluded that investigating the thera-
peutic potential of Kombucha beverages prepared from different
substrates would be an interesting approach.
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Time effect
Kombucha tea fermentation normally ranges from 7 to 60 days

and the biological activities may increase during this process; how-
ever, the best results have been obtained in an average of 15 days
(Chu & Chen, 2006). Although most of the antioxidant activities
that have been obtained have increased with the incubation time,
prolonged fermentation is not recommended due to the accu-
mulation of organic acids, which could reach damaging levels for
direct consumption. Furthermore, the CO2 generated can start to
be accumulated at the interface between the biofilm and the broth
and may block the transfer of nutrients creating a starved envi-
ronment (Chu & Chen, 2006). Selecting the duration of the fer-
mentation period also depends on the expected sensory attributes.
Reiss (1994) reported that within 6 to 10 days of fermentation a
fruit-like refreshing beverage was obtained, contrary to the vinegar
taste that is obtained with a prolonged period. According to the
Food and Drug Administration Model Food Code for Kombucha
brewing (Nummer, 2013) no more of 10 days of fermentation
are recommended if produced for human consumption. Coton
et al. (2017) studied the evolution of the microbial populations
of Kombucha tea from industrial production throughout time (0,
2, 4, and 8 days). They observed that most of the AAB where
more abundant in the biofilms than in the liquid broth at day 0
and that after 8 days they arrived to an equilibrium, compared to
yeast species that seemed to be quite stable in both phases during
the whole fermentation. Chakravorty et al. (2016) evaluated the
polyphenol content and the antioxidant activity of Kombucha tea
during the course of its fermentation (0, 7, 14, and 21 days) and
observed a high tendency to increase specially after the 7th days,
which may be due to the higher microbial diversity achieved by
that time.

Temperature effect
Maintaining the optimum temperature throughout the fermen-

tation results in a better microbial growth and enzyme activity,
therefore, the fermentation benefits are improved. In addition,
the antioxidant activity of foods with plant origins can be influ-
enced by temperature variations, for example, the production of
phenolic compounds (Hur et al., 2014). Generally, the tempera-
ture values of Kombucha fermentation ranges between 22 °C and
30 °C. However, Vitas et al. (2013) carried out the fermentation
of milk products with the tea fungus at temperature values of:
37 °C, 40 °C, and 43 °C using optimization models, according
to their results the temperature was the most significant factor for
the duration of fermentation, and the highest values of antioxidant
activity were obtained with temperature values between 37 °C and
42 °C. According to Lončar et al. (2006), quantities of generated
acids and metabolites, as well as vitamin C, were greater in samples
obtained at higher temperatures.

pH
The pH is one of the most important environmental parameters

affecting the fermentation of Kombucha, because some of the
acids formed as acetic and gluconic, could be responsible of the
biological activities of the resulting beverages. It is also closely
related to the microbial growth and the structural changes of the
phytochemical compounds which may influence the antioxidant
activity (Hur et al., 2014). However, the lowest acceptable pH
value should not decrease below 3, which is the one of digestive
tract (Lončar et al., 2006). Also, in accordance with Šaponjac and
Vulić (2014), to obtain a pleasant sour beverage, the fermentation
should be ended when the total acidity reaches the optimum value

of 4 to 5 g/L. However, the period of time to obtain this value
may differ depending on the origin of the culture medium and
fermentation conditions.

Oxygen transfer rate and scaling-up process
Most fermentation processes are aerobic and, therefore, require

the provision of oxygen. If the stoichiometry of respiration is
considered, then the oxidation of glucose may be represented as:

C6H12O6 + 6O2 = 6H2O + 6CO2

where 192 g of oxygen are required for the complete oxidation of
180 g of glucose. However, both components must be in solution
before they are available to a microorganism and oxygen is ap-
proximately 6000 times less soluble in water than is glucose, thus,
it is not possible to provide a microbial culture with the necessary
amount of oxygen for completing the oxidation of the glucose or
any other carbon source, in one addition.

At the beginning of the process, significant amounts of ethanol
and monosaccharides required for AAB are provided by Kom-
bucha yeasts. The oxidation of ethanol into acetic acid requires
one mole of oxygen (32 g) to completely oxidize 1 mole of ethanol
(46 g), therefore, the activity of AAB as strict aerobic organisms
depends on the transfer of oxygen from the air into the fermenta-
tion broth. For that reason, a microbial culture must be supplied
with oxygen during growth at a sufficient rate to satisfy the or-
ganisms demand (Stanbury et al., 2013). As being a beverage in
constant study and evolution, Kombucha has mainly been studied
at lab-scale, from 200 mL to 2 L. However, few researchers have
studied its fermentation in higher volumes. Malbaša et al. (2006)
applied a regression analysis method to a batch process of 8 L and
concluded that the pH is a variable that can allow scale-up esti-
mation. Later, Cvetković, Markov, Djurić, Savić, and Velićanski
(2008) studied the impact of the specific interfacial area as a vari-
able that could control the production of Kombucha tea, using
reactors of 90 L and concluded that reactors having the same in-
terfacial area, although being different in size could provide similar
mass transfer conditions. And recently, Coton et al. (2017) worked
with volumes of 1,000 L and studied the microbial ecology of the
produced tea by meta-barcoding and culture-based methods. They
observed that the microbial population seemed not to be affected
by the industrial-scale microbial stress factors, which could lead
to the standardization of Kombucha tea for industrial production.
Besides the volume, there are several parameters for bioprocess
development to be taken into account, where the most important
include the vessels geometry and the agitation type (Junker, 2004).
In Kombucha fermentation, according to some authors, the ag-
itation processing affects the structure of the biofilm due to the
reported loss of mechanical strength (Chawla et al., 2009). In static
cultures, substrates have to be entirely transported by diffusion and
the oxygen availability might become the limiting factor for cell
metabolism, which could have a negative effect on the production
and quality of cellulose. The kinetic factor that expresses the re-
lationship between the dissolved oxygen and the surface/volume
of the medium is the specific interfacial area, which is directly
related to other factors, such as the reactor cross-section and the
mass transfer coefficient (Cvetković et al., 2008). This means that
the rate of Kombucha batch fermentation without agitation and
without introducing gas depends on the specific interfacial area.
Cvetković et al. (2008) developed a mathematical model to scale
Kombucha tea fermentation based on several specific interface
areas. The verification of the model was made in reactors of
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Table 3–In vitro biological activities of Kombucha tea.

Biological assays
Conditions of the tested

Kombucha Results Authors

Antimicrobial activity 14 fermentation days Growth inhibition of: Shigellasonnei, Escherichia
coli, Salmonella enteritidis and Salmonella
typhimurium

(Sreeramulu, Zhu, & Knol, 2000)

9 fermentation days Helicobacter pylori, Escherichia coli, Staphylococcus
aureus and Agrobacterium tumefaciens

(Greenwalt and others 1998)

21 fermentation days Candida glabrata, Candida tropicalis, Candida sake,
Candida dubliniensis and Candida albicans

(Battikh et al., 2012)

Antioxidant activity
(DPPH)

10 fermentation days with a mixed
culture of acetic bacteria and
Saccharomyces cerevisiae

60% of inhibition against the radical DPPH with
0.1mL of Kombucha tea

(Malbaša et al., 2011)

7 fermentation days of Kombucha
from Rooibos tea

EC50 of 20 mg/kg (Hoon and others 2014)

21 fermentation days IC50 of 0.92 mg/mL (Chakravorty et al., 2016)
Anti-inflammatory

activity
8 fermentation days of Oak infusion Suppression of the proinflammatory cytokines

TNF-alpha and IL-6
(Vázquez-Cabral et al., 2017)

Anticarcinogenic
potential

14 fermentation days with subsequent
solvent fragmentation (chloroform,
ethyl acetate and butanol)

Cytotoxic effect of 21.5% in 786-O and 93.45%
of inhibition of U2OS cells with 100 μg/mL,
reduced cell motility in A549

(Jayabalan et al., 2011)

large volume (90 L) and very small vessels of 0.33 L. The model
standardizes the optimal conditions as: 70 g/L of initial substrate
(sucrose), interfacial area of 0.0231 to 0.0642 cm−1, and 14 days
of fermentation. They concluded that regardless of the vessel size
or volume, if the value of the interfacial area is constant they could
ensure the production of Kombucha tea with similar properties. In
the specific case of batch fermentation of Kombucha tea, several
biological factors should be taken into account. Especially in the
absence of agitation, where a microbial disintegration may occur
between the aerobic acetic bacteria which will tend to occupy the
surface layer and the yeast which may precipitate to the bottom
of the vessel (Lončar et al., 2006), and this might have negative
effects in the fermentation process. Besides the fact that microbial
cellulose has been already well studied by some authors (Campano
et al., 2016; Czaja et al., 2006), the available information defining
the optimal reactor conditions for its development such as sur-
face/volume or surface/height are limited. In order to investigate
the influence of the volume in the processing, Lončar et al. (2006)
worked with several conditions and found that the best geometric
conditions for scaling-up the fermentation were obtained with a
reactor of 4 L and a diameter of 17 cm. Goh and others (2012) in-
vestigated the relationship between the yield, the properties of the
biofilm produced from Kombucha fermentation, and the surface
area, and found that the production of the biofilm was increased
with an intensification of surface area, and was decreased with
a broader depth. This can be explained because the metabolic
process is completely aerobic and it is constantly generating car-
bon dioxide, which might be trapped in the pellicle and end up
being accumulated in greater quantities especially in the deeper
mediums. However, Caicedo, Da França, and Lopez (2001) found
that even though the surface area is determinant, the height is
not unimportant, since it was observed that a minimal height is
needed for the development of the pellicle, this taking into ac-
count the production of several layers of cellulose throughout the
fermentation which will occupy part of the initial volume.

Beside all the previously mentioned parameters, Kombucha’s
elaboration process may also affect its final properties. The process
still remains quite artisanal and the exact proportion of compo-
nents may vary depending on the expected product. However, it
generally follows the next order: Tea leaves or plant extracts are
added to boiling water and allowed to infuse for about 10 to 15 min
after which the leaves are removed. Sucrose is next dissolved in

the hot tea and after the infusion is left to cool. The sweetened
beverage is subsequently poured into a container and inoculated
with about 3% w/v of already prepared Kombucha biofilm, after-
wards the container is covered with a clean cloth and incubated at
room temperature.

Nevertheless, in order to optimize the industrial production of
Kombucha tea, as being a functional beverage, a complete study in-
cluding high-volume production, microbiological identification,
and biological assays should be performed.

Biological Activities
Tea is consumed in China since 5,000 years ago, it is the second

most popular beverage after water, and it is even considered as the
oldest known medicine because of its health benefits. Torino et al.
(2013) reported that the bioconversion from conjugated forms
of phenolic compounds into their free form during fermentation
improves their healthy function. Several investigations have been
done in order to understand the impact of tea fermentation with
the microbial consortia and some of its biological activities have
seen to be improved (Table 3).

Even though most of the biological assays in Kombucha tea
have been done in vitro, several authors have done in vivo studies
using rats and have found interesting results. Srihari, Karthikesan,
Ashokkumar, and Satyanarayana (2013) evaluated the antihyper-
glycaemic efficacy of the fermented tea in diabetic rats by testing
different concentrations of Kombucha extracts during 45 days.
They observed that with the daily administration of 6 mg/kg bw
the glycosylated hemoglobin was decreased and the plasma insulin
was increased. Bhattacharya, Gachhui, and Sil (2013) studied
the protective effect of Kombucha in different organs including
pancreas, liver, kidney, and heart of diabetic rat models and the
obtained results showed significant antidiabetic potential which
allowed the restoration of the induced pathophysiological changes.
Later, Gharib (2014) subjected a group of rats to electromagnetic
waves increasing the iron copper levels and decreasing the zinc
content. The rats were then administered with Kombucha tea dur-
ing 9 weeks and a decrease in the iron content was observed, going
from 65 to 99.5 μg/g. This allows to conclude that Kombucha
could have ameliorative signs against the effects of electromagnetic
radiation. And recently, Bellassoued et al. (2015) worked with
rats fed with cholesterol-rich diets and high thiobarbituric acid
reactive substances (TBARS) levels, and found that the TBARS

586 Journal of Food Science � Vol. 83, Nr. 3, 2018



Co
nc

ise
Re

vie
ws

&
Hy

po
the

se
si

nF
oo

dS
cie

nc
e

Understanding Kombucha tea fermentation . . .

concentration was significantly reduced in the liver and kidney
after the treatment with the fermented tea. Their results showed
that Kombucha tea could be considered as a therapeutic agent
against liver and kidney toxicities. Although several in vitro bio-
logical activities have been studied for Kombucha tea, still clinical
investigations and more in vivo evaluations should be performed
in order to confirm the claimed health benefits of the beverage.

Potential Toxicity
Kombucha fermentation is commonly homemade, and there-

fore it is important to be cautious because pathogenic microorgan-
isms can contaminate the tea throughout the preparation. Some
cases of health disorders have been reported by some individ-
uals with suspected dizziness and nausea, severe illness, allergic
reactions, and head pain, thus leading to its contraindication in
pregnant and lactating women (Jayabalan et al., 2014; Srinivasan,
Smolinske, & Greenbaum, 1997; Watawana et al., 2015). On the
other hand, Vijayaraghavan et al. (2000) evaluated oral toxicity for
90 days in rats and any toxic signs were detected. The U.S. Food
and Drug Administration also carried out some tests and reported
that Kombucha tea is safe for human consumption. However,
because of the previously mentioned reasons and to the micro-
biological complexity of this beverage it is always important to
produce it under the FDA Model Food Code (Nummer, 2013).

Conclusion and Perspectives
Even though nowadays Kombucha tea is known all over the

world, its biological properties are not well understood. More re-
search concerning Kombucha fermentation kinetics is needed in
order to be able to identify the produced metabolites, especially
those that may be potentially beneficial and to understand its rela-
tionship with the biological activities. Regarding the Kombucha
substrates, plant extracts have attracted great interest because of
their multiple applications. Furthermore, the extension of a fer-
mentation process from a laboratory scale to a commercial product
is a challenge because of the difficulty of evaluating the factors
which may influence the scaling process during cultivation. More
scientific research should be done to understand the links between
the fermentation and the biological activities of Kombucha tea,
establishing it as a functional beverage with a clear evidence in
the advantages and disadvantages of its consumption. There are a
number of parameters and variations to be measured, controlled,
and experienced in order to determine the optimum fermentation
conditions.
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